Journal of Engineering Physics and Thermophysics, Vol. 72, No. 5, 1999

NUMERICAL MODELING OF FILLING OF AN
AXISYMMETRIC CHANNEL WITH A NONLINEAR
VISCOPLASTIC FLUID WITH ALLOWANCE FOR THE
II-EFFECT

K. A. Chekhonin and P. A. Sukhinin UDC 532.522:518.13

The finite-element method is applied 1o describe the slow flow (Re << 1) of a nonlinear-viscoplastic fluid
described by the Shul’man rheological model, which is implemented on filling of vertical volumes in the
gravity field. The sliding effect of the fluid near a solid wall (the IT-effect) is taken into consideration.
Numerical studies of the process of filling of an axisymmetric region are carried out. An influence of the
IT-effect on the hydrodynamic process of filling is shown.

Many of the highly filled polymer compositions under melt processing manifest near-wall and orientation
effects (the Il-effect) [1-4]. As the strain intensity grows, the polymer composition begins to slide near a solid wall
with a velocity proportional to shear stresses developed in this region:

Tfr = — SPsl.frU:f ’

75 is the friction stress, g ¢ is the coefficient of sliding friction; Uy is the sliding vclocity on solid walls; s is the
nonlinearity parameter of the IT-effect.

The present study is devoted to mathematical modeling of a nonlinear viscoplastic fluid flow with a free
surface implemented on filling of axisymmetric volumes with low shear rates in the presence of the IT-effect.

In [5-8] the results of calculations of a non-Newtonian fluid flow with a free surface with allowance for
abnormal motion near solid surfaces are reported. However, at present comprehensive investigations of the influence
of the Il-effect on fluid flow dynamics of a nonlinear viscoplastic fluid with a free surface are unknown.

1. We consider a slow (Re << 1) flow of a nonlinear viscoplastic fluid with a free surface which is
implemented on filling of the region between two coaxial cylinders (Fig. 1). A mathematical formulation of this
problem in a quasistationary statement for a cylindrical coordinate system (x; = r; x3 = z) will include:

the equations of motion

~ Vi P+ Vir=4, 6=, 3; (1)
the discontinuity equation
VU;=0. 2
As a rheological equation, we adopt the Shul’man model [9]:

T;; = 2ue;

i ij at TH > To; el-j- = 0 at TH < TO N (3)

where a non-Newtonian fluid is described by

po= g " )T AT “4
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Fig. 1. Geometry and boundaries of the region to be filled.

The problem (1) through (4) will be solved under the following boundary conditions:

a) at the entrance to the flow region I'e, the profile of the steady-state fluid flow with the prescribed
rheology (3), (4) is given as

Ul=0’ U3=U3(,u,xk); (5)
b) on the free surface of the fluid I the dynamic and kinematic boundary conditions are specified as follows

ax;
~L_-y, i=1,3. (6)

Tijnj-(P‘Pext)”i=0’ dt

On solid walls I', of the time-variable calculated region €, the following boundary conditions are adopted that
allow for the T1-effect [7, 8 1:

U; =0, if [7)3] =7,,

U =0, .
] |13l =1, =n,Us, if |75] >1,.

(7)

Here 7, and 7y, are the empirical constants of sliding friction.

This boundary condition needs explanation. With increasing strain intensity, in a polymeric viscoplastic
medium the "skeleton” formed by the filler undergoes complete rupture, while in the vicinity of the solid wall a
narrow layer of binder is formed, whose viscosity is lower by several orders of magnitude than that of the main
structure of the material. This indicates that the medium near the solid wall begins to slide. According to (7), on
the solid wall I', the adhesion condition is satisfied until the shear stresses that develop on the wall exceed the
limit of 7, after which the fluid starts sliding over the wall with a velocity proportional to the shear stress.

As the initial conditions of the problem, the fields of the velocity, pressure and non-Newtonian fluid
obtained in solving the problem (1)-(7) with a plane free surface were adopted and the nonstationary problem on
filling of a region by a Shul’man nonlinear viscoplastic fluid reduces to a sequence of solutions of quasistationary
problems on each time layer.

2. Numerically the problem (1)-(7) is solved by the finite-element method in a weak Galerkin formulation
that makes it possible to satisfy, in a natural way, the dynamic boundary conditions on a free surface (6) and the
sliding friction condition (7) in the form of an integral over the boundary. The initial problem is solved in a
combined formulation in terms of the velocity and pressure variables (7, 81. To obtain a stable solution and to
determine exactly the velocity and pressure fields, a different order of approximation of the quantities sought is
used. Thus, the second order of approximation is used for velocity, while for pressure the first order is adopted.

A finite-element grid is generated in the time-variable calculated region in an automatic mode by an
algebraic method with the use of adaptive algorithms [8 ] which allow the finite-element grid to thicken in the region
of strong gradients of a solution and singularities. For the problem under consideration such regimes are: 1) the
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Fig. 2. Evolution of the maximum bending of the free surface as a function
of Try (a): 1) Try = 10% 2) 10% 3) 10; 4) 0 at Try = 12 and a profile of the
free surface vs. the parameter Try (b): 1) Trp=5;2) 12; 3) > 26 at Tr; =
10.

"boundary” of the fluid-quasisolid body transition, where an abrupt change in the non-Newtonian viscosity occurs,
and 2) the region in the vicinity of the line of contact of the free fluid surface with the solid walls (the line of
three-phase contact (LTPC)).

To eliminate undifferentiable singularities with the conditions of sliding friction on walls (7) being satisfied
and with performing straight-through count in the quasisolid flow regions (r;; < 7¢) as the strain-rate intensity
A - 0 and the viscosity 4 = <, the Shul’man rheological model (3), (4) and boundary condition (7) were modified
by introducing the small parameter [10]:

1/ 1/ -1
pe= 10" "+ (upA) AT A = Ve + e @®)
Uy=0, |13l =9gnUs, Pgp =1,/ VU§+E + 74, 9

where £ << 1 and & << 1 are regularization parameters. In the calculations, they were assumed tobe e =& = 1078,
Application of the weak formulation of the finite-element method to Egs. (1)-(2) reduces the initial
differential problem to a system of the nonlinear projective-grid equations

/ [— K, PNy +p, (ViNgUg + V; NgUg) V; Na] de +

2

+ [N dQ+ [ Pony N, dQ = [ ¢y pUsN, 1;dQ =0, (10)
Q, Iy r,
g{tviNﬁuiﬁK)’:O’ i,j=1,3; a,ﬂ:l_,_Q;y=l,4. (11)

Here 7;, t; are the normal and the tangent to the surface, respectively; N,, K, are the basis functions for velocity
and pressure approximations.

The system of nonlinear projective-grid equations (10), (I1) is solved by the Newton—Rafson method [11].
For visualization of motion of the free surface, particles-markers are placed on ii. Their position at the next time
step is determined by integration of the kinematic boundary condition (6). The marker positions found are used
to approximate the free surface by cubic splines. Then in the newly obtained region the finite-element grid is
completely constructed.

3. Let us consider some results of the calculations. The axisymmetric region Q is filled at a constant flow
rate. For convenience of analysis, we introduce the dimensionless complexes: St = Re/Fr is the Siokes parameter,
Bin = 1/ (up/ Ay is the Bingham parameter, and the parameters characterizing the ratio of the viscous forces and
the sliding friction effect: Try = 9L/ tegs and Trp = rp/ Wwpdm).
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Fig. 3. Profiles of the axial (solid lines) and radial (dashed) velocities on the
free surface at Trp =12: 1) Try = 104; 2) 100; 3) 0.
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Fig. 4. Widths of the quasisolid flow core S (solid lines) and dimensions of
the spouting flow region L; (dashed) as a function of Try and Try: 1) Trp =
0; 2) 12; 3) 20; 4) > 26.

Calculations were made at the following values of the parameters: St = 20, Bin = 10, tp = 103 Pa-sec, n =
0.95, m=1, U=10"2m/sec, Ay = 1073 sec™!, R{/Ry =0.3/1.3, Tr; = 0~10°, Tr, = 0—30.

The results calculated have shown that from some moment of time the free fluid surface acquires a steady
form and moves in an axial direction at the mean flow rate of the main flow. Figure 2 illustrates the influence of
the parameters Tr; and Tr; on free surface bending and the process of establishing the free surface profile. An
increase in Tr; from infinity to zero entails an increase in the sliding velocity of the nonlinear viscoplastic fluid
over the solid wall. This leads to a decrease in the free surface bending and a reduction in the ways it is established
(Fig. 2a). An increase in Tr; at a fixed Tr; causes an increase in bending of the form of the free fluid surface
cstablished (Fig. 2b).

Figure 3 shows the influence of the IT-effect on the profiles of axial and radial velocities on the free fluid
surface at different Tr; values. As is seen, as Tr; increases, the axial velocity profile on the free surface becomes
more filled, while the radial component values decrease.

A characteristic feature of this hydrodynamic process is the presence of two zones in the fluid flow: 1) a
rcgion of a spouting two-dimensional stream in the vicinity of the free surface and 2) a region of the one-dimensional
main stream at a distance from the moving front of the free surface. One more feature of the flow of viscoplastic
fluids is the presence of a quasisolid flow zone in the main stream, where the intensity of stresses is lower than
the yield strength of the fluid (rg = ry). For this hydrodynamic process it represents a hotlow cylinder with a
"sharpening” in the vicinity of the moving front of the free surface (Fig. 1). Investigations of the influence of the
main rheodynamic parameters of the process of filling on the size and location of the spouting flow region and of
the quasisolid zone are carried out in [8, 12, 13]. Figure 4 illustrates the influence of the Il-effect on the size and
location of the quasisolid stream zone in the spouting flow region. An analysis of the calculated results reveals that
an increase in the Tr); parameters leads to narrowing of the quasisolid flow zone and to an increase in the
dimensions of the spouting flow region. This is a consequence of the intensity increasing of the shear stresses in
the main flow and in the vicinity of the moving free surface of the viscoplastic fluid. A change in the Tr; values
exerts a particularly strong influence on the hydrodynamic process at small Tr;. Its increase causes growth of the
spouting flow region and an increase in the width of the quasisolid flow core. At large Try, i.e., Tr; > 10* the
parameter Try does not influence the process of filling.

As is seen from Fig. 4, the curves show pronounced asymptotics. An analysis of the calculated results has
shown that at Try > 10* the maximum axial component of the velocity vector on the solid walls of the region is
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less than 10~ of the mean flow rate, which can be seen as fulfillment of the adhesion condition. Here, the parameter
Tr; does not exert any influence on the process of filling.

If Tr; = 0, then for all values of Tr; < Bin filling is carried out in the presence of a plane free surface,
i.e., the sliding velocity is equal to the mean flow rate and the quasisolid flow core occupies the entire width of the
flow channel.

NOTATION

Uy, Us, radial and axial components of the vector velocity; P, pressure; €2, axisymmetric region to be filled;
Qycalculated region at the moment of time ¢; ¢, time; /7, free fluid surface; I'y, solid walls of the region; Iep,
entrance to the flow region; f; = (0, —pg), vector of mass forces; p, fluid density; g, free fall acceleration; 7;;, tension
of viscous stresses; e;; = (V;U; + V;Up /2, tensor of strain rates; 7¢, yield strength of the fluid; Up, plastic viscosity;
n, m, constants of the Shul’'man rheological model; 1j; = Vz;7;;/2, A = V2eje;;, intensity of strain stresses and
rates, respectively; Pex;, prescribed external pressure (above the free surface); n;, f;, vector components of the
normal and the tangent to the surface; Re = pUL/u.f, Fr = Uz/(gL), Reynolds and Froude numbers; L =
R, — Ry, characteristic size; Ry, R, radii of the internal and external cylinders; uess = [rll)/ 4 gupAm)l/ m ]”AI;I,
effective viscosity; Ay = U/L, mean intensity of strain rates; U, mean flow rate; A/, maximum bending of the free
surface; S, width of the quasisolid flow core; Ls, dimension of the spouting flow region; 7, and #¢, empirical
coefficients of the friction model; N, K, basic functions of the velocity and pressure approximations; Try, Tra,
dimensionless parameters of the IT-effect.
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